Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

نویسندگان

  • Songlin Chao
  • Fang Zou
  • Fanfan Wan
  • Xiaobin Dong
  • Yanlin Wang
  • Yuxuan Wang
  • Qingxin Guan
  • Guichang Wang
  • Wei Li
چکیده

Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale and controllable synthesis of metal-free nitrogen-doped carbon nanofibers and nanocoils over water-soluble Na2CO3

Using acetylene as carbon source, ammonia as nitrogen source, and Na2CO3 powder as catalyst, we synthesized nitrogen-doped carbon nanofibers (N-CNFs) and carbon nanocoils (N-CNCs) selectively at 450°C and 500°C, respectively. The water-soluble Na2CO3 is removed through simple washing with water and the nitrogen-doped carbon nanomaterials can be collected in high purity. The approach is simple, ...

متن کامل

Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions.

Nitrogen-doped graphitic porous carbons (NGPCs) have been synthesized by using a zeolite-type nanoscale metal-organic framework (NMOF) as a self-sacrificing template, which simultaneously acts as both the carbon and nitrogen sources in a facile carbonization process. The NGPCs not only retain the nanopolyhedral morphology of the parent NMOF, but also possess rich nitrogen, high surface area and...

متن کامل

Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene.

The rational design of metal-organic frameworks (MOFs) with hollow features and tunable porosity at the nanoscale can enhance their intrinsic properties and stimulates increasing attentions. In this Communication, we demonstrate that methanol can affect the coordination mode of ZIF-67 in the presence of Co(2+) and induces a mild phase transformation under solvothermal conditions. By applying th...

متن کامل

Trimetallic Au-Cu-La/AC for Acetylene Hydrochlorination in a Multi-Tubular Fixed Bed Reactor

The metal chloride of LaCl3 was chosen to modify the Au-Cu/AC to decrease the noble metal of gold and enhance the catalytic performances. Then a mercury-free catalyst of Au-Cu-La/AC was prepared by the impregnation method, and the fresh Au-Cu-La/AC and Au-Cu/AC catalysts were also characteri...

متن کامل

ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation

Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017